Partie I - Questions préliminaires

I.A - Soit E un IR -espace vectoriel de dimension n, \mathscr{U} et \mathscr{V} deux bases de E; on note P la matrice de passage de \mathscr{U} à \mathscr{V} .

Soit f un endomorphisme de E, A sa matrice sur \mathcal{U} et B sa matrice sur \mathcal{V} . Exprimer A en fonction de B, de P et de P^{-1} . (On ne demande pas de démonstration).

I.B. Soient M et N deux matrices appartenant à $M_n(\mathbb{R})$; on rappelle que M est dite semblable à N s'il existe une matrice inversible Q appartenant à $M_n(\mathbb{R})$ telle que $M = QNQ^{-1}$.

Montrer que si M est semblable à N, alors N est semblable à M. On dit alors, de façon abrégée, que « M et N sont semblables ».

I.C - Soit A, B et C trois matrices appartenant à $M_n(\mathbb{R})$. On suppose que A est semblable à B et que B est semblable à C.

Montrer que A est semblable à C.

Montrer aussi que 'A et 'B sont semblables.

I.D - Soit $A \in M_n(\mathbb{R})$.

I.D.1) Montrer que si A est diagonale, A et 'A sont semblables.

I.D.2) Montrer que si A est semblable à une matrice diagonale alors A et tA sont semblables. Plus généralement :

Le but du problème est de montrer que toute matrice A appartenant à $M_n(\mathbb{R})$ est semblable à sa transposée.

Partie II - Cas n = 2

Dans cette partie, on fixe une matrice $A \in M_2(\mathbb{R})$, non diagonale, qu'on écrit

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 et on cherche à résoudre l'équation (\mathscr{E}): ' $AP = PA$,

où l'inconnue P est une matrice appartenant à $M_2(\mathbb{R})$, qu'on cherchera sous la forme

$$P = \begin{bmatrix} x & y \\ z & t \end{bmatrix}.$$

II.A - Trouver un ensemble de conditions, portant sur x, y, z et t, qui soit nécessaire et suffisant pour que P vérifie (\mathscr{E}) .

On ramènera cet ensemble à deux conditions, l'une étant y = z et l'autre ne portant que sur x, y et t.

II.B - En prenant l'un des deux nombres x ou t nul, l'autre égal à d-a et, dans chacun des deux cas, en choisissant convenablement y, trouver deux matrices P solutions; montrer que l'une au moins de ces deux matrices est inversible.

II.C - Montrer que A et 'A sont semblables.

Partie III. Cas général

Dans cette partie, n est un entier quelconque supérieur ou égal à 2.

Soit $A \in M_n(\mathbb{C})$ et f l'endomorphisme de \mathbb{C}^n dont A est la matrice sur la base canonique.

On admettra le résultat suivant
$$\{ (u) = du \}$$
.

Soit α une valeur propre de f. On peut trouver une base $\mathscr{B} = (e_1, ..., e_n)$ de \mathbb{C}^n et un entier k entre 0 et n-1 ayant les propriétés suivantes :

- La matrice T de f sur \mathscr{B} est triangulaire supérieure.
- Les k premiers termes diagonaux sont tous différents de α et les n-k derniers sont tous égaux à α.

On pose $g = f - \alpha id$, où id désigne l'identité de \mathbb{C}^n .

- $\mathbf{MT}B$ Dans cette question, k = 0; les termes diagonaux de T sont donc tous égaux à α.
- \mathbf{m} B.1) Montrer que, pour tout i de 2 à $n, g(e_i)$ appartient au sous-espace engendré par $e_1, e_2, ..., e_{i-1}$.

En déduire que l'endormorphisme g^n est nul. (g^m désigne l'endomorphisme composé gog... og, où g est utilisé m fois).

Dans toute la suite de ce V.B, on désigne par p le plus petit entier supérieur ou égal à 1 tel que g^p soit nul.

Montrer que si p = 1, alors A est semblable à 'A.

On continue en supposant $p \ne 1$. On a donc: $2 \le p \le n$, $g^{p-1} \ne 0$ et on désigne par \vec{a} un vecteur tel que $g^{p-1}(\vec{a})$ ne soit pas nul.

On pose $\vec{u}_p = \vec{u}$, $\vec{u}_{p-1} = g(\vec{u})$, ..., $\vec{u}_1 = g^{p-1}(\vec{u})$.

Montrer que la famille $(\vec{u}_1, ..., \vec{u}_p)$ est libre.

On suppose que p = n.

Quelles sont les matrices de f sur les bases $(\vec{u}_1, \vec{u}_2, ..., \vec{u}_n)$ et $(\vec{u}_n, \vec{u}_{n-1}, ..., \vec{u}_1)$ de \mathbb{C}^n ? Montrer que A est semblable à 'A.

III.B.3) On suppose que p < n et on complète $(\vec{u}_1, ..., \vec{u}_p)$ en une base $(\vec{u}_1, \vec{u}_2, ..., \vec{u}_n)$ de \mathbb{C}^n .

On note U la matrice de g sur cette base et P la matrice carrée dont la k – ième ligne est égale à la première ligne de U^{k-1} .

Montrer que les lignes de cette matrice P, à partir de la p+1 – ième, sont nulles. Que peut-on en conclure concernant le rang de P?

Pour j et k entre 1 et p, préciser $g^{k-1}(u_j)$ suivant que k < j, k = j ou k > j.

En déduire les p premiers termes de la k-ième ligne de P.

Montrer que la matrice P est de rang p.

Soit h l'endomorphisme admettant P pour matrice dans la base (u1, ... , un) de C^n

et soit W le sous-espace engendre par $(u_1, u_2, ..., u_p)$.

Montrer que pour tout $\vec{v} \in W$, on a $h(\vec{v}) = \vec{v}$.

En déduire que W et le noyau de h sont deux sous-espaces supplémentaires de \mathbb{C}^n . Montrer que ces deux sous-espaces sont stables par g et par f.

MLC - Dans cette question, k n'est pas nul.

rrc.1) Justifier que la matrice de g sur la base ${\mathscr B}$ est de la forme

$$\begin{bmatrix} T_1 & B \\ - & - \\ 0 & T_2 \end{bmatrix},$$

où les matrices T_1 et T_2 sont triangulaires supérieures, de tailles respectives k et n-k.

Montrer que la matrice T_2^{n-k} est nulle et que la matrice T_1 est inversible.

 $\Pi \Gamma$ C.2) On admet que la matrice de g^{n-k} sur la base \mathscr{B} est de la forme

$$\begin{bmatrix} T_1^{n-k} & B' \\ - & - \\ O & T_2^{n-k} \end{bmatrix}.$$

Quel est le rang de cette matrice? Quelle est la dimension du noyau G de g^{n-k} ?

OK.C.3) Soit F le sous-espace de \mathbb{C}^n engendré par $(\hat{e}_1, \hat{e}_2, ..., \hat{e}_k)$.

Montrer que F et G sont supplémentaires dans \mathbb{C}^n et que ces sous-espaces de \mathbb{C}^n sont stables par g et f.

 $\mathbb{JL}\mathbf{D}$ - On suppose par récurrence que toute matrice carrée complexe de taille comprise entre 1 et n-1 est semblable à sa transposée.

 $\mathfrak{D}.1$) On suppose ici qu'il existe deux sous-espaces F et G supplémentaires dans \mathbb{C}^n et stables par f, aucun de ces deux sous-espaces n'étant réduit au vecteur nul.

En considérant les restrictions de f à F et G, montrer que A est semblable à tA .

 $\mathfrak{IID}.2$) En rassemblant les résultats, montrer que, dans tous les cas, A est semblable à tA .

Pour conclure, on pout mentrer que si deux matrices de $\mathcal{M}_n(R)$ sont semblables dans $\mathcal{M}_n(C)$ alors elles sont semblables dans $\mathcal{M}_n(R)$, ce qui montre que toute matrice A de $\mathcal{M}_n(R)$ est semblable à sa transposée.

Exercice

Soit (a_n) une suite de réels positifs tendant vers 0. On suppose que la suite

$$\left(\left(\sum_{k=0}^{n}a_{k}\right)-na_{n}\right)$$

est bornée.

Montrer que la série $\sum a_n$ converge.