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Week  (Final exam): Thursday, January , :-:

Very important:

– Please use different sheets of paper for different parts (or, in other words, use a new sheet of paper

if you change parts).

– Please write your name on the sheets of paper.

All the exercises are independent. You may treat them in any order you want. The quality, the

precision and the presentation of your mathematical writing will play a role in the appreciation of your

work.

�Advice. Use draft paper before writing your answers in the final form. Reread your work. Do not

forget that what is graded is what is written, not what is in your head.

In this exam, “informal” counting arguments are OK (for non-counting arguments, proofs should be precise)
Part 

Exercise 1.
) Give the definition of a probability on a finite 
ate space Ω.

) Show that for every n ≥ 6 it is possible to cut a square into n smaller squares.

) Let (Ω,P) be a finite probability space. Show that for every A,B ⊆Ω, P(A∪B) = P(A)+P(B)−P(A∩B).

Solution of exercise 1.
) A probability P on a finite 
ate space Ω is a fun�ion P : P (Ω)→ [0,1] such that:

– P(Ω) = 1

– for every A,B ⊆ E, if A∩B = ∅, then P(A∪B) = P(A) +P(B).

) We argue by indu�ion. For an integer n ≥ 6, let P (n) be the assertion “it is possible to cut a

square into n, n+ 1 and n+ 2 smaller squares”.

Basis 
ep. As the following figure shows, P (6) is true.

Indu�ive 
ep. Let n ≥ 6 be an integer such that P (n) is true. We show that P (n + 1) is true. By

the indu�ive hypothesis, we already know that it is possible to cut a square into n + 1 and n + 2

squares. To show that is possible to cut a square into n + 3 squares, consider a cutting of a square

into n squares (possible thanks to the indu�ive hypothesis), and then simply cut one of the squares

into 4, thus giving a cutting into n+ 3 squares.

Remark. It is also possible to prove that P (n) is true for every n ≥ 6 by using a 
rong indu�ion.


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) We write A∪ B = (A\A∩ B)∪ (A∩ B)∪ (B\A∩ B) and observe that this is a union of pairwise

disjoint events. Hence, by the result 
ated in the le�ure (namely: if n ≥ 2 and (Ak)1≤k≤n are pairwise

disjoint events; then P(∪nk=1Ak) =
∑n
k=1P(Ak)),

P(A∪B) = P(A\A∩B) +P(A∩B) +P(B\A∩B).

We have P(A) = P(A\A∩B) +P(A∩B) and P(B) = P(B\A∩B) +P(A∩B) (indeed, as was seen in the

le�ure, if E,F are two events such that E ⊆ F, then P(F) = P(F\E) +P(E)). Therefore

P(A∪B) = (P(A)−P(A∩B)) +P(A∩B) + (P(B)−P(A∩B)) ,

and the desired result follows.

Part 

Exercise 2. Let A, B and C be three sets. Show that (A∪B = A∪C and A∩B = A∩C) ⇐⇒ B = C.

Solution of exercise 2. We argue by double implication.

For the converse implication, it is clear that if B = C then A∪B = A∪C and A∩B = A∩C.

For the dire� implication, assume that A∪B = A∪C and A∩B = A∩C. We show that B = C by

double inclusion.

– Take x ∈ B. We argue by contradi�ion and assume that x < C. We have x ∈ A∪B, so x ∈ A∪C.

Hence x ∈ A. Therefore x ∈ A∩B, so x ∈ A∩C and thus x ∈ C, which is a contradi�ion. We conclude

that B ⊆ C.

Since B and C play symmetric roles, the same proof shows that C ⊆ B. To be complete, here is

the proof:

– Take x ∈ C. We argue by contradi�ion and assume that x < B. We have x ∈ A∪C, so x ∈ A∪B.

Hence x ∈ A. Therefore x ∈ A∩C, so x ∈ A∩B and thus x ∈ B, which is a contradi�ion. We conclude

that C ⊆ B.

Exercise 3. Let E,F,G,H be four sets and f : E→ F, g : F→ G and h : G→H be three fun�ions. Assume

that g ◦ f is bije�ive and that h ◦ g is bije�ive.

) Show that g is bije�ive.

Remark. If you have not managed to solve this que
ion, if needed, you can assume that g is bije�ive

for the next que
ion.

) Show that f is bije�ive.

Solution of exercise 3.
) We show that g is one-to-one and that g is onto.

– Take x,y ∈ F and assume that g(x) = g(y). Then h(g(x)) = h(g(y)). Since h ◦ g is bije�ive, it is

one-to-one, so x = y. Hence g is one-to-one.

– Take y ∈ G. We show that y has a preimage by g. Since g ◦ f is bije�ive, it is onto, so there


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exi
s x ∈ E such that g(f (x)) = y. In particular, f (x) is a preimage of y by g. Hence g is onto.

) Since g is bije�ive and since a composition of bije�ive fun�ions is bije�ive, f = g−1 ◦ (g ◦ f )

is bije�ive.

Part 

Exercise 4. Let n ≥ 2 be an integer. In a group of n people, every person throws a fair dice which has n

faces labelled {1,2, . . . ,n}.
) Give a probability space to model this experiment.

) What is the probability that all the results on the dices are different? Ju
ify your answer.

) What is the probability that no one gets the same result as Prof. B. (who is one of the people of the

group)? Ju
ify your answer.

Solution of exercise 4.
) We take Ω = {1,2, . . . ,n}n equipped with the uniform probability P (the i-th coordinate of an

element of Ω represents the result of the i-th person). Note that Card(Ω) = nn.

) Let A be the event “all the results all different”. Since P(A) = Card(A)
nn , we count the number

of elements of A. To obtain n different results, we have n choices for the result of the fir
 person,

n−1 for the second one, etc. up to the la
 one (1 choice), so we get n! choices in total (produ� rule).

Hence

P(A) =
n!
nn
.

) Let B be the event “no one gets the same result as Prof. B.”. Since P(B) = Card(B)
n! , we count the

number of elements of B. We have n choices for the result of Prof. B. and n−1 choices for the results

of all the other people, so we get n(n− 1)n−1 choices in total. Hence

P(B) =
n(n− 1)n−1

nn
=

(
1− 1

n

)n−1
.


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Exercise 5. Let n ≥ 1 be an integer.

) For an integer 1 ≤ k ≤ n, show that k
(n
k

)
= n

(n−1
k−1

)
.

) Show that
∑n
k=1 k

(n
k

)
2n−k = n3n−1.

) How many couples (X,Y ) of subsets of {1,2, . . . ,n} such that Card(X ∩ Y ) = 1 are there? Give the

simple
 possible expression and ju
ify your answer.

Remark. If you have not managed to solve a que
ion, if needed, you can assume that it is true.

Solution of exercise 5.
) We have

k

(
n
k

)
= k

n!
(n− k)!k!

=
n!

(n− k)!(k − 1)!
= n

(n− 1)!
(n− 1− (k − 1))(k − 1)!

= n
(
n− 1
k − 1

)
.

) We use the fir
 que
ion and the Binomial theorem:

n∑
k=1

k

(
n
k

)
2n−k =

n∑
k=1

n

(
n− 1
k − 1

)
2n−k

= n2n−1
n−1∑
k=0

(
n− 1
k

)
2−k

= n2n−1
(
1 +

1
2

)n−1

= n3n−1.

) To con
ru� a couple (X,Y ) of subsets of {1,2, . . . ,n} such that Card(X∩Y ) = 1, we fir
 choose

a subset X of {1,2, . . . ,n} with k elements (with 1 ≤ k ≤ n), then choose the element which will be in

common with Y (k choices) and that build Y by adding a subset of {1,2, . . . ,n}\X (2n−k choices). The

answer is therefore
n∑
k=1

k

(
n
k

)
2n−k = n3n−1.

Part 

Exercise 6. Let n ≥ 2 be an integer. We denote by Sn the set of all permutations of {1,2, . . . ,n} and by ε(σ )

the signature of a permutation σ ∈ Sn. We say that σ is even if ε(σ ) = 1 and odd if ε(σ ) = −1. We denote

by An the set of all even permutations of Sn and by On the set of all odd permutations of Sn.

) Is the permutation π =

1 2 3 4 5 6

3 5 4 1 2 6

 even or odd? Ju
ify your answer.

) Show that the fun�ion
F : An −→ On

σ 7−→ σ ◦ (1,2)

is a bije�ion (here (1,2) is a transposition). Deduce that Card(An) = n!
2 .


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) Let k ≥ 1 be an integer. What is the probability that the produ� of k permutations chosen uni-

formly at random is an even permutation? Ju
ify your answer (do not forget to mention the probability

space).

Remark. If you have not managed to solve que
ion ), if needed, you can assume that Card(An) = n!
2 .

Solution of exercise 6.
) To find the signature of π we write it as a produ� of cycles and use the multiplicativity of the

signature: π = (1,3,4)(2,5), so ε(π) = (−1)3−1(−1)2−1 = −1.

) Fir
, since the signature of a transposition is −1 and since the signature is multiplicative, if

σ ∈ An, then σ ◦ (1,2) ∈On.

To show that F is a bije�ion we show that it is one-to-one and onto.

– Take σ,τ ∈ An such that F(σ ) = F(τ). Then σ ◦ (1,2) = τ ◦ (1,2), hence σ ◦ (1,2)◦ (1,2) = τ ◦ (1,2)◦
(1,2), so σ = τ (because (1,2) ◦ (1,2) is the identity). Hence F is one-to-one.

– Take τ ∈On. Then τ ◦ (1,2) ∈ An is a preimage of τ by F, so F is onto.

As a consequence, since Sn has cardinality n! and is the disjoint union of An and On, we have

Card(An) = Card(On) = n!/2.

) We take Ω = Skn equipped with the uniform probability. We are intere
ed in the probability

of the event E = {(σ1, . . . ,σk) ∈ Skn : ε(σ1 ◦ σ2 ◦ · · · ◦ σk) = 1}.
To simplify notation, set ` = bk/2c (so that k = 2` if k is even and k = 2` + 1 if k is odd). By the

multiplicativity property of the signature, ε(σ1 ◦σ2 ◦ · · ·◦σk) = 1 if and only if an even number of the

σi ’s are odd. As a consequence, we can write E as the pairwise disjoint union

E = E0 ∪E1 ∪ · · · ∪E`,

where

Ej = {(σ1, . . . ,σk) ∈ Skn : Card({1 ≤ i ≤ k : ε(σi) = −1} = 2j})

for 0 ≤ j ≤ `.
To compute the cardinality of Ej we fir
 choose the 2j indices among k which will carry an odd

permutation (
( k
2j
)

choices), and then we choose the corresponding permutations (n!/2 choices for

every index between 1 and k, since Card(An) = Card(On) = n!/2). Hence

Card(Ej ) =
(
k
2j

)(n!
2

)k
.

But ∑̀
j=0

(
k
2j

)
= 2k−1. ()


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Indeed, if we set

A =
k∑

j=0,j even

(
k
j

)
, B =

k∑
j=0,j odd

(
k
j

)
,

by the Binomial theorem we have 2k = (1 + 1)k = A+B and 0 = (1− 1)k = A−B, so we get ().
Therefore

Card(E) = 2k−1
(n!

2

)k
.

We conclude that

P(E) =
Card(E)

(n!)k
=

1
2
.

Part  (optional)

This part is optional and does not count in the grading. Please go beyond only if you have solved all the

previous exercises.

Exercise 7. Define a selfish set to be a set which has its own cardinality (number of elements) as an

element. Find, with proof, the number of subsets of {1,2,3,4,5,6,7,8,9,10} which are minimal selfish

sets, that is, selfish sets none of whose proper subsets is selfish (a subset A of a set E is called proper if

A , E).

Solution of exercise 7. The answer is 55.

Indeed, let [n] denote the set {1,2, . . . ,n}, and let fn denote the number of minimal selfish subsets

of [n]. Then the number of minimal selfish subsets of [n] not containing n is equal to fn−1.

On the other hand, since 1 and n cannot both occur in a minimal selfish set of [n], for any

minimal selfish subset of [n] containing n, by subtra�ing 1 from each element, and then taking

away the element n − 1 from the set, we obtain a minimal selfish subset of [n − 2]. Conversely, any

minimal selfish subset of [n − 2] gives rise to a minimal selfish subset of [n] containing n by the

inverse procedure. Hence the number of minimal selfish subsets of [n] containing n is fn−2. Thus

we obtain fn = fn−1 + fn−2. Since f1 = f2 = 1, we have fn = Fn, where Fn denotes the n-th term of the

Fibonacci sequence.

Since F10 = 55, the desired result follows.

Remarks. – Using the fa� that in a minimal selfish set, its smalle
 element is its cardinality,

one can explicitly count the number of minimal selfish sets of {1,2, . . . ,10} by di
inguishing cases

according to their smalle
 element.

– This is essentially Exercice B- from  Putnam competition.

Exercise 8. Let n ≥ 1 be an integer. Denote by Mn the number of words one can create by using an

alphabet of n letters such that all the letters in the word are different. Show that Mn = ben!c − 1.

Remark. You may use the fa� that e = limn→∞
∑n
k=0

1
k!


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Solution of exercise 8. Let Mn,k be the number of words of k letters such that all the letters are dif-

ferent. Clearly, Mn,k = 0 if k > n. If k ≤ n, obtaining a word of k letters such that all the letters are

different amounts to choosing the fir
 letter (n choices), then the second letter (n − 1 choices), etc.

up to the k-th letter (n− k + 1 choices). Hence

Mn,k = n(n− 1) · · · (n− k + 1) =
n!

(n− k)!
.

We conclude that

Mn =
n∑
k=1

Mn,k = n!
n∑
k=1

1
(n− k)!

= n!
n∑
k=0

1
k!
− 1.

Now, define

un =
n∑
k=0

1
k!
, vn = un +

1
n!
.

One readily checks that (un) and (vn) are adjacent, meaning that (un) is increasing, (vn) is decreasing

and vn −un→ 0. In particular, since un→ e, it follows that for every n ≥ 1, un < e < vn. Thus

Mn < n!e − 1 <Mn + 1,

which implies that Mn = ben!c − 1.

Exercise 9. What does the following image prove?

Solution of exercise 9. The image proves that sin(α +β) = sin(α)cos(β) + cos(α)sin(β) and cos(α +β) =

cos(α)cos(β)− sin(α)sin(β).


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