

The Brownian Rabbit and scaling limits of preferential attachment trees

Igor Kortchemski (joint work with N. Curien, T. Duquesne & I. Manolescu) DMA – École Normale Supérieure – Paris

44ème École d'été de probabilités de Saint-Flour, July 2014

I. PREFERENTIAL ATTACHMENT AND INFLUENCE OF THE SEED

II. LOOPTREES AND PREFERENTIAL ATTACHMENT

III. EXTENSIONS AND CONJECTURES

I. PREFERENTIAL ATTACHMENT AND INFLUENCE OF THE SEED

II. LOOPTREES AND PREFERENTIAL ATTACHMENT

III. EXTENSIONS AND CONJECTURES

TREES BUILT BY PREFERENTIAL ATTACHMENT

Let $(T_n^{(S)})_{n \ge k}$ be a sequence of random trees grown recursively at random:

Let $(T_n^{(S)})_{n \ge k}$ be a sequence of random trees grown recursively at random: $T_k^{(S)} = S$ is a tree with k vertices (the seed),

Let $(T_n^{(S)})_{n \ge k}$ be a sequence of random trees grown recursively at random:

- $T_k^{(S)} = S$ is a tree with k vertices (the seed),
- \blacktriangleright for every $n\geqslant 1,$ $T_{n+1}^{(S)}$ is obtained from $T_n^{(S)}$ by adding an edge to a vertex of $T_n^{(S)}$

Let $(T_n^{(S)})_{n \ge k}$ be a sequence of random trees grown recursively at random:

- $T_k^{(S)} = S$ is a tree with k vertices (the seed),
- ▶ for every $n \ge 1$, $T_{n+1}^{(S)}$ is obtained from $T_n^{(S)}$ by adding an edge to a vertex of $T_n^{(S)}$ chosen at random

Let $(T_n^{(S)})_{n \ge k}$ be a sequence of random trees grown recursively at random:

- $T_k^{(S)} = S$ is a tree with k vertices (the seed),
- for every $n \ge 1$, $T_{n+1}^{(S)}$ is obtained from $T_n^{(S)}$ by adding an edge to a vertex of $T_n^{(S)}$ chosen at random **proportionally to its degree.**

Let $(T_n^{(S)})_{n \ge k}$ be a sequence of random trees grown recursively at random:

- $T_k^{(S)} = S$ is a tree with k vertices (the seed),
- for every $n \ge 1$, $T_{n+1}^{(S)}$ is obtained from $T_n^{(S)}$ by adding an edge to a vertex of $T_n^{(S)}$ chosen at random **proportionally to its degree.**

(animation of preferential attachment here)

This is the preferential attachement model (Szymánski '87; Albert & Barabási '99; Bollobás, Riordan, Spencer & Tusnády '01).

INFLUENCE OF THE SEED

Question (Bubeck, Mossel & Rácz): What is the influence of the seed tree?

Question (Bubeck, Mossel & Rácz): What is the influence of the seed tree? Can one distinguish asymptotically between different seeds?

Four simulations of $T_n^{(S_1)}$ for n = 5000:

Four simulations of $T_n^{(S_2)}$ for n = 5000:

Four simulations of $T_n^{(S_1)}$, $T_n^{(S_2)}$ for n = 5000:

Four simulations of $T_n^{(S_1)}$, $T_n^{(S_2)}$ for n = 5000:

Do we have $S_1 = S_2$?

Four simulations of $T_n^{(S_1)}$, $T_n^{(S_2)}$ for n = 5000:

Do we have $S_1 = S_2$?

Four simulations of $T_n^{(S'_1)}$ for n = 5000:

Four simulations of $T_n^{(S'_2)}$ for n = 5000:

Four simulations of $T_n^{(S'_1)}$, $T_n^{(S'_2)}$ for n = 5000:

Four simulations of $T_n^{(S'_1)}$, $T_n^{(S'_2)}$ for n = 5000:

Do we have $S'_1 = S'_2$?

Four simulations of $T_n^{(S'_1)}$, $T_n^{(S'_2)}$ for n = 5000:

Do we have $S'_1 = S'_2$?

For finite trees S_1 and S_2 , set

$$\mathbf{d}(\mathbf{S}_1, \mathbf{S}_2) = \lim_{n \to \infty} \mathbf{d}_{\mathsf{TV}}(\mathsf{T}_n^{(\mathsf{S}_1)}, \mathsf{T}_n^{(\mathsf{S}_2)}),$$

where $d_{\mathsf{T}\mathsf{V}}$ denotes the total variation distance for random variables taking values in the space of finite trees

For finite trees S_1 and S_2 , set

$$\mathbf{d}(\mathbf{S}_1, \mathbf{S}_2) = \lim_{n \to \infty} \mathbf{d}_{\mathsf{TV}}(\mathsf{T}_n^{(\mathsf{S}_1)}, \mathsf{T}_n^{(\mathsf{S}_2)}),$$

where d_{TV} denotes the total variation distance for random variables taking values in the space of finite trees $(d_{TV}(X, Y) = \sup_{A} |\mathbb{P}(X \in A) - \mathbb{P}(Y \in A)|)$.

For finite trees S_1 and S_2 , set

$$\mathbf{d}(\mathbf{S}_1, \mathbf{S}_2) = \lim_{n \to \infty} \mathbf{d}_{\mathsf{TV}}(\mathsf{T}_n^{(\mathsf{S}_1)}, \mathsf{T}_n^{(\mathsf{S}_2)}),$$

where $d_{\mathsf{T}V}$ denotes the total variation distance for random variables taking values in the space of finite trees ($d_{\mathsf{T}V}(X,Y) = \mathsf{sup}_A |\mathbb{P}(X \in A) - \mathbb{P}(Y \in A)|$).

Proposition (Bubeck, Mossel & Rácz '14)

The function d is a pseudo-metric.

For finite trees S_1 and S_2 , set

$$\mathbf{d}(\mathbf{S}_1, \mathbf{S}_2) = \lim_{n \to \infty} \mathbf{d}_{\mathsf{TV}}(\mathsf{T}_n^{(\mathsf{S}_1)}, \mathsf{T}_n^{(\mathsf{S}_2)}),$$

where $d_{\mathsf{T}V}$ denotes the total variation distance for random variables taking values in the space of finite trees ($d_{\mathsf{T}V}(X,Y) = \sup_A |\mathbb{P}(X \in A) - \mathbb{P}(Y \in A)|$).

Proposition (Bubeck, Mossel & Rácz '14)

The function d is a pseudo-metric.

Conjecture (Bubeck, Mossel & Rácz '14)

The function d is a metric on trees with at least 3 vertices.

For finite trees S_1 and S_2 , set

$$\mathbf{d}(\mathbf{S}_1, \mathbf{S}_2) = \lim_{n \to \infty} \mathbf{d}_{\mathsf{TV}}(\mathsf{T}_n^{(\mathsf{S}_1)}, \mathsf{T}_n^{(\mathsf{S}_2)}),$$

where d_{TV} denotes the total variation distance for random variables taking values in the space of finite trees $(d_{TV}(X, Y) = \sup_{A} |\mathbb{P}(X \in A) - \mathbb{P}(Y \in A)|)$.

The function d is a pseudo-metric.

Conjecture (Bubeck, Mossel & Rácz '14)

The function d is a metric on trees with at least 3 vertices.

Bubeck, Mossel & Rácz showed that this is true when S_1 and S_2 do not have the same degree sequence by studying the maximal degree of $T_n^{\rm (S)}$.

For finite trees S_1 and S_2 , set

$$d(S_1, S_2) = \lim_{n \to \infty} d_{TV}(T_n^{(S_1)}, T_n^{(S_2)}),$$

where d_{TV} denotes the total variation distance for random variables taking values in the space of finite trees $(d_{TV}(X, Y) = \sup_A |\mathbb{P}(X \in A) - \mathbb{P}(Y \in A)|)$.

```
Proposition (Bubeck, Mossel & Rácz '14)
```

The function d is a pseudo-metric.

Conjecture (Bubeck, Mossel & Rácz '14)

The function d is a metric on trees with at least 3 vertices.

Bubeck, Mossel & Rácz showed that this is true when S_1 and S_2 do not have the same degree sequence by studying the maximal degree of $T_n^{\rm (S)}$.

Let $(T_n^{(S)})_{n \ge k}$ be a sequence of random **plane** trees grown recursively at random:

Let $(T_n^{(S)})_{n \geqslant k}$ be a sequence of random plane trees grown recursively at random:

• $T_k^{(S)} = S$ is a **plane** tree with k vertices (the seed),

Let $(T_n^{(S)})_{n \geqslant k}$ be a sequence of random plane trees grown recursively at random:

- $T_k^{(S)} = S$ is a **plane** tree with k vertices (the seed),
- ▶ for every $n \ge 1$, $T_{n+1}^{(S)}$ is obtained from $T_n^{(S)}$ by adding an edge into a corner of $T_n^{(S)}$

Let $(T_n^{(S)})_{n \geqslant k}$ be a sequence of random plane trees grown recursively at random:

- $T_k^{(S)} = S$ is a **plane** tree with k vertices (the seed),
- ► for every $n \ge 1$, $T_{n+1}^{(S)}$ is obtained from $T_n^{(S)}$ by adding an edge into a **corner** of $T_n^{(S)}$ chosen **uniformly** at random.

Let $(T_n^{(S)})_{n \geqslant k}$ be a sequence of random plane trees grown recursively at random:

- $T_k^{(S)} = S$ is a **plane** tree with k vertices (the seed),
- ► for every $n \ge 1$, $T_{n+1}^{(S)}$ is obtained from $T_n^{(S)}$ by adding an edge into a **corner** of $T_n^{(S)}$ chosen **uniformly** at random.
- \bigwedge The graph structure of $T_n^{(S)}$ is that of preferential attachment.

Our observables: embeddings of decorated trees

A decorated tree τ is a tree τ with positive integer labels $(\ell(u), u \in \tau)$.

Our observables: embeddings of decorated trees

A decorated tree τ is a tree τ with positive integer labels $(\ell(u), u \in \tau)$. We imagine that there are $\ell(u)$ non-distinguishable arrows pointing to each vertex $u \in \tau$.

A decorated tree τ is a tree τ with positive integer labels $(\ell(u), u \in \tau)$. We imagine that there are $\ell(u)$ non-distinguishable arrows pointing to each vertex $u \in \tau$.

If T is a plane tree, $D_{\tau}(T)$ denotes the number of decorated embeddings of τ in T.

A decorated tree τ is a tree τ with positive integer labels $(\ell(u), u \in \tau)$. We imagine that there are $\ell(u)$ non-distinguishable arrows pointing to each vertex $u \in \tau$.

If T is a plane tree, $D_{\tau}(T)$ denotes the number of decorated embeddings of τ in T.

I.e. $D_{\tau}(T)$ is the number of ways to embed τ in T s.t. each arrow pointing to a vertex of τ is associated with a corner of T adjacent to the corresponding vertex (distinct arrows associated with distinct corners).

Here $\tau_k :=$ unique vertex with label k. - $D_{\tau_1}(T_n^{(S)}) =$

Here $\tau_k :=$ unique vertex with label k. - $D_{\tau_1}(T_n^{(S)}) = 2n - 2$

Here $\tau_k :=$ unique vertex with label k.

- $D_{\tau_1}(T_n^{(S)}) = 2n - 2$ (the number of corners of a tree with n vertices).

- $D_{\tau_1}(T_n^{(S)}) = 2n 2$ (the number of corners of a tree with n vertices).
- What about $D_{\tau_2}(T_n^{(S)})$?

- $D_{\tau_1}(T_n^{(S)}) = 2n 2$ (the number of corners of a tree with n vertices).
- What about $D_{\tau_2}(T_n^{(S)})$?

$$\mathbb{E}\left[\mathsf{D}_{\tau_2}(\mathsf{T}_{n+1}^{(S)}) \mid \mathsf{T}_n^{(S)}\right] = + + .$$

- $D_{\tau_1}(T_n^{(S)}) = 2n 2$ (the number of corners of a tree with n vertices).
- What about $D_{\tau_2}(T_n^{(S)})$?

```
 \begin{split} \mathbb{E} \left[ D_{\tau_2}(T_{n+1}^{(S)}) \mid T_n^{(S)} \right] \\ &= D_{\tau_2}(T_n^{(S)}) \\ &+ \\ &+ \\ +. \end{split}
```

Here $\tau_k :=$ unique vertex with label k.

- $D_{\tau_1}(T_n^{(S)}) = 2n 2$ (the number of corners of a tree with n vertices).
- What about $D_{\tau_2}(T_n^{(S)})$?
 - $$\begin{split} \mathbb{E} \left[D_{\boldsymbol{\tau}_2}(T_{n+1}^{(S)}) \mid T_n^{(S)} \right] \\ &= D_{\boldsymbol{\tau}_2}(T_n^{(S)}) \end{split}$$

+(one arrow points to a newly created corner)

+(the two arrows point to the two newly created corners).

- $D_{\tau_1}(T_n^{(S)}) = 2n 2$ (the number of corners of a tree with n vertices).
- What about $D_{\tau_2}(T_n^{(S)})$?
 - $$\begin{split} \mathbb{E} \left[D_{\boldsymbol{\tau}_2}(T_{n+1}^{(S)}) \mid T_n^{(S)} \right] \\ &= D_{\boldsymbol{\tau}_2}(T_n^{(S)}) \\ &+ (\text{one arrow points to a newly created corner}) \\ &+ \frac{1}{2n-2} D_{\boldsymbol{\tau}_1}(T_n^{(S)}). \end{split}$$

- $D_{\tau_1}(T_n^{(S)}) = 2n 2$ (the number of corners of a tree with n vertices).
- What about $D_{\tau_2}(T_n^{(S)})$?
 - $$\begin{split} \mathbb{E} \left[D_{\tau_2}(T_{n+1}^{(S)}) \mid T_n^{(S)} \right] \\ &= D_{\tau_2}(T_n^{(S)}) \\ &+ (\text{one arrow points to a newly created corner}) \\ &+ 1. \end{split}$$

- $D_{\tau_1}(T_n^{(S)}) = 2n 2$ (the number of corners of a tree with n vertices).
- What about $D_{\tau_2}(T_n^{(S)})$?

$$\mathbb{E}\left[D_{\tau_{2}}(T_{n+1}^{(S)}) \mid T_{n}^{(S)}\right] \\ = D_{\tau_{2}}(T_{n}^{(S)}) \\ + \frac{2}{2n-2}D_{\tau_{2}}(T_{n}^{(S)}) \\ + 1.$$

- $D_{\tau_1}(T_n^{(S)}) = 2n 2$ (the number of corners of a tree with n vertices).
- What about $D_{\tau_2}(T_n^{(S)})$?

$$\mathbb{E}\left[D_{\tau_{2}}(\mathsf{T}_{n+1}^{(S)}) \mid \mathsf{T}_{n}^{(S)}\right] = \left(1 + \frac{2}{2n-2}\right)D_{\tau_{2}}(\mathsf{T}_{n}^{(S)}) + 1.$$

Here $\tau_k :=$ unique vertex with label k.

- $D_{\tau_1}(T_n^{(S)}) = 2n 2$ (the number of corners of a tree with n vertices).
- What about $D_{\tau_2}(T_n^{(S)})$?

$$\mathbb{E}\left[D_{\tau_{2}}(T_{n+1}^{(S)}) \mid T_{n}^{(S)}\right] = \left(1 + \frac{2}{2n-2}\right)D_{\tau_{2}}(T_{n}^{(S)}) + 1.$$

Hence there exist constants α_n , β_n such that

$$M_2(n) = \alpha_n D_{\tau_2}(T_n^{(S)}) - \beta_n$$

is a martingale.

Here $\tau_k :=$ unique vertex with label k.

- What about $D_{\tau_3}(T_n^{(S)})$?

$$\begin{split} \mathbb{E} \left[D_{\tau_3}(T_{n+1}^{(S)}) \mid T_n^{(S)} \right] \\ &= D_{\tau_3}(T_n^{(S)}) \\ &+ \\ &+ \end{split}$$

Here $\tau_k :=$ unique vertex with label k.

- What about $D_{\boldsymbol{\tau}_3}(T_n^{(S)})$?
 - $\mathbb{E}\left[\mathsf{D}_{\tau_3}(\mathsf{T}_{n+1}^{(S)}) \mid \mathsf{T}_n^{(S)}\right] = \mathsf{D}_{\tau_2}(\mathsf{T}_n^{(S)})$

+(one arrow points to a newly created corner)

+(two arrows point to the two newly created corners)

Here $\tau_k :=$ unique vertex with label k.

- What about $D_{\tau_3}(T_n^{(S)})$?

$$\begin{split} \mathbb{E} \left[D_{\boldsymbol{\tau_3}}(T_{n+1}^{(S)}) \mid T_n^{(S)} \right] \\ &= D_{\boldsymbol{\tau_3}}(T_n^{(S)}) \\ &+ \frac{3}{2n-2} D_{\boldsymbol{\tau_3}}(T_n^{(S)}) \end{split}$$

+(two arrows point to the two newly created corners)

Here $\tau_k :=$ unique vertex with label k.

- What about $D_{\tau_3}(T_n^{(S)})$?

$$\mathbb{E}\left[D_{\tau_{3}}(T_{n+1}^{(S)}) \mid T_{n}^{(S)}\right] \\ = D_{\tau_{3}}(T_{n}^{(S)}) \\ + \frac{3}{2n-2}D_{\tau_{3}}(T_{n}^{(S)}) \\ + \frac{2}{2n-2}D_{\tau_{2}}(T_{n}^{(S)})$$

Here $\tau_k :=$ unique vertex with label k.

- What about $D_{\boldsymbol{\tau_3}}(T_n^{(S)})$?

$$\mathbb{E}\left[D_{\tau_{2}}(T_{n+1}^{(S)}) \mid T_{n}^{(S)}\right] = \left(1 + \frac{3}{2n-2}\right)D_{\tau_{3}}(T_{n}^{(S)}) + \frac{2}{2n-2}D_{\tau_{2}}(T_{n}^{(S)}).$$

Here $\tau_k :=$ unique vertex with label k.

- What about $D_{\tau_3}(T_n^{(S)})$?

$$\mathbb{E}\left[D_{\tau_{2}}(T_{n+1}^{(S)}) \mid T_{n}^{(S)}\right] = \left(1 + \frac{3}{2n-2}\right)D_{\tau_{3}}(T_{n}^{(S)}) + \frac{2}{2n-2}D_{\tau_{2}}(T_{n}^{(S)}).$$

Hence there exist constants a_n , b_n , c_n such that

$$M_{3}(n) = a_{n}D_{\tau_{3}}(T_{n}^{(S)}) + b_{n}D_{\tau_{2}}(T_{n}^{(S)}) - c_{n}$$

is a martingale.

Proposition.

There exists a partial order \preccurlyeq on decorated trees, such that for every decorated tree τ , there exist constants $\{c_n(\tau, \tau') : \tau' \preccurlyeq \tau, n \ge 2\}$ such that, for every seed S,

$$\mathsf{M}_{\tau}^{(S)}(\mathfrak{n}) = \sum_{\tau' \preccurlyeq \tau} c_{\mathfrak{n}}(\tau, \tau') \cdot \mathsf{D}_{\tau'}(\mathsf{T}_{\mathfrak{n}}^{(S)})$$

19 / V17

More generally:

Proposition.

There exists a partial order \preccurlyeq on decorated trees, such that for every decorated tree τ , there exist constants $\{c_n(\tau, \tau') : \tau' \preccurlyeq \tau, n \ge 2\}$ such that, for every seed S,

$$\mathsf{M}_{\tau}^{(S)}(\mathfrak{n}) = \sum_{\tau' \preccurlyeq \tau} c_{\mathfrak{n}}(\tau, \tau') \cdot \mathsf{D}_{\tau'}(\mathsf{T}_{\mathfrak{n}}^{(S)})$$

is a martingale

Proposition.

There exists a partial order \preccurlyeq on decorated trees, such that for every decorated tree τ , there exist constants $\{c_n(\tau, \tau') : \tau' \preccurlyeq \tau, n \ge 2\}$ such that, for every seed S,

$$\mathsf{M}_{\tau}^{(S)}(\mathfrak{n}) = \sum_{\tau' \preccurlyeq \tau} c_{\mathfrak{n}}(\tau, \tau') \cdot \mathsf{D}_{\tau'}(\mathsf{T}_{\mathfrak{n}}^{(S)})$$

is a martingale and is bounded in \mathbb{L}^2 .

Proposition.

There exists a partial order \preccurlyeq on decorated trees, such that for every decorated tree τ , there exist constants $\{c_n(\tau, \tau') : \tau' \preccurlyeq \tau, n \ge 2\}$ such that, for every seed S,

$$\mathsf{M}_{\tau}^{(S)}(n) = \sum_{\tau' \preccurlyeq \tau} c_n(\tau, \tau') \cdot \mathsf{D}_{\tau'}(\mathsf{T}_n^{(S)})$$

is a martingale and is bounded in \mathbb{L}^2 .

Proof of the theorem, i.e. $\lim_{n\to\infty} d_{\mathsf{TV}}(\mathsf{T}_n^{(S_1)},\mathsf{T}_n^{(S_2)})>0$.

Proposition.

There exists a partial order \preccurlyeq on decorated trees, such that for every decorated tree τ , there exist constants $\{c_n(\tau, \tau') : \tau' \preccurlyeq \tau, n \ge 2\}$ such that, for every seed S,

$$\mathsf{M}_{\tau}^{(S)}(n) = \sum_{\tau' \preccurlyeq \tau} c_n(\tau, \tau') \cdot \mathsf{D}_{\tau'}(\mathsf{T}_n^{(S)})$$

is a martingale and is bounded in \mathbb{L}^2 .

Proof of the theorem, i.e. $\lim_{n\to\infty} d_{\mathsf{TV}}(\mathsf{T}_n^{(S_1)},\mathsf{T}_n^{(S_2)})>0$. If $S_1\neq S_2$, there exists a decorated tree τ and n_0 such that $\mathbb{E}\left[\mathsf{M}_\tau^{(S_1)}(n_0)\right]\neq\mathbb{E}\left[\mathsf{M}_\tau^{(S_2)}(n_0)\right].$

Proposition.

There exists a partial order \preccurlyeq on decorated trees, such that for every decorated tree τ , there exist constants $\{c_n(\tau, \tau') : \tau' \preccurlyeq \tau, n \ge 2\}$ such that, for every seed S,

$$\mathsf{M}_{\tau}^{(S)}(n) = \sum_{\tau' \preccurlyeq \tau} c_n(\tau, \tau') \cdot \mathsf{D}_{\tau'}(\mathsf{T}_n^{(S)})$$

is a martingale and is bounded in \mathbb{L}^2 .

Proof of the theorem, i.e. $\lim_{n\to\infty} d_{\mathsf{TV}}(\mathsf{T}_n^{(S_1)},\mathsf{T}_n^{(S_2)})>0$. If $S_1\neq S_2$, there exists a decorated tree τ and n_0 such that $\mathbb{E}\left[\mathsf{M}_\tau^{(S_1)}(n_0)\right]\neq \mathbb{E}\left[\mathsf{M}_\tau^{(S_2)}(n_0)\right]$. Hence

$$\lim_{n \to \infty} \mathsf{d}_{\mathsf{TV}}(\mathsf{T}_n^{(S_1)}, \mathsf{T}_n^{(S_2)}) \ge \liminf_{n \to \infty} \mathsf{d}_{\mathsf{TV}}(\mathsf{M}_\tau^{(S_1)}(n), \mathsf{M}_\tau^{(S_2)}(n))$$

Proposition.

There exists a partial order \preccurlyeq on decorated trees, such that for every decorated tree τ , there exist constants $\{c_n(\tau, \tau') : \tau' \preccurlyeq \tau, n \ge 2\}$ such that, for every seed S,

$$\mathsf{M}_{\tau}^{(S)}(n) = \sum_{\tau' \preccurlyeq \tau} c_n(\tau, \tau') \cdot \mathsf{D}_{\tau'}(\mathsf{T}_n^{(S)})$$

is a martingale and is bounded in \mathbb{L}^2 .

Proof of the theorem, i.e. $\lim_{n\to\infty} d_{\mathsf{TV}}(\mathsf{T}_n^{(S_1)},\mathsf{T}_n^{(S_2)}) > 0$. If $S_1 \neq S_2$, there exists a decorated tree τ and n_0 such that $\mathbb{E}\left[\mathsf{M}_\tau^{(S_1)}(n_0)\right] \neq \mathbb{E}\left[\mathsf{M}_\tau^{(S_2)}(n_0)\right]$. Hence

 $\lim_{n\to\infty} \mathsf{d}_{\mathsf{TV}}(\mathsf{T}_n^{(S_1)},\mathsf{T}_n^{(S_2)}) \geqslant \liminf_{n\to\infty} \mathsf{d}_{\mathsf{TV}}(\mathsf{M}_\tau^{(S_1)}(n),\mathsf{M}_\tau^{(S_2)}(n)) > 0.$

I. PREFERENTIAL ATTACHMENT AND INFLUENCE OF THE SEED

II. LOOPTREES AND PREFERENTIAL ATTACHMENT

III. EXTENSIONS AND CONJECTURES

$\land \rightarrow$ Question. Does the sequence $(T_n^{(S)})$ admit scaling limits?

 $\land \rightarrow$ Question. Does the sequence $(T_n^{(S)})$ admit scaling limits? It is known that the diameter of $T_n^{(S)}$ is of order log(n):

 $\land \rightarrow$ Question. Does the sequence $(T_n^{(S)})$ admit scaling limits? It is known that the diameter of $T_n^{(S)}$ is of order log(n): Does $\frac{1}{\log(n)} \cdot T_n^{(S)}$ converge towards a limiting compact metric space?

 $\land \lor$ Question. Does the sequence $(T_n^{(S)})$ admit scaling limits? It is known that the diameter of $T_n^{(S)}$ is of order log(n): Does $\frac{1}{\log(n)} \cdot T_n^{(S)}$ converge towards a limiting compact metric space?

 $\wedge \rightarrow$ Answer: no.

Discrete looptrees

Given a **plane** tree τ , define $\text{Loop}(\tau)$ as the graph obtained from τ

Discrete looptrees

Given a **plane** tree τ , define $\text{Loop}(\tau)$ as the graph obtained from τ by replacing each vertex u by a loop with deg(u) vertices,
Discrete looptrees

Given a **plane** tree τ , define $Loop(\tau)$ as the graph obtained from τ

- \bowtie by replacing each vertex u by a loop with deg(u) vertices,
- $^{\hbox{\tiny IMP}}$ then by gluing the loops together according to the tree structure of $\tau.$

Discrete looptrees

Given a **plane** tree τ , define $\text{Loop}(\tau)$ as the graph obtained from τ

By replacing each vertex u by a loop with deg(u) vertices,

 $^{\hbox{\tiny IMP}}$ then by gluing the loops together according to the tree structure of $\tau.$

Figure : A plane tree τ and its associated discrete looptree Loop(τ).

Discrete looptrees

Given a **plane** tree τ , define $\text{Loop}(\tau)$ as the graph obtained from τ

 \bowtie by replacing each vertex u by a loop with deg(u) vertices,

 $^{\hbox{\tiny IMP}}$ then by gluing the loops together according to the tree structure of $\tau.$

Figure : A plane tree τ and its associated discrete looptree $\text{Loop}(\tau)$.

We view $Loop(\tau)$ as a compact metric space.

Scaling limits of trees built by preferential attachment

Theorem (Curien, Duquesne, K., Manolescu).

There exists a random compact metric space $\mathcal{L}^{(S)}$ such that:

$$n^{-1/2} \cdot \text{Loop}(\mathsf{T}_n^{(S)}) \xrightarrow[n \to \infty]{a.s.} \mathcal{L}^{(S)},$$

where the convergence holds almost surely for the $\ensuremath{\mathsf{Gromov-Hausdorff}}$ topology.

Scaling limits of trees built by preferential attachment

Theorem (Curien, Duquesne, K., Manolescu).

There exists a random compact metric space $\mathcal{L}^{(S)}$ such that:

$$n^{-1/2} \cdot \text{Loop}(\mathsf{T}_n^{(S)}) \xrightarrow[n \to \infty]{a.s.} \mathcal{L}^{(S)},$$

where the convergence holds almost surely for the $\ensuremath{\mathsf{Gromov-Hausdorff}}$ topology.

We will see that $n^{1/2}$ is the order of large degrees in $T_n^{(S)}$.

Scaling limits of trees built by preferential attachment

Theorem (Curien, Duquesne, K., Manolescu).

There exists a random compact metric space $\mathcal{L}^{(S)}$ such that:

$$n^{-1/2} \cdot \operatorname{Loop}(\mathsf{T}_n^{(S)}) \xrightarrow[n \to \infty]{a.s.} \mathcal{L}^{(S)},$$

where the convergence holds almost surely for the $\ensuremath{\mathsf{Gromov-Hausdorff}}$ topology.

Figure : The looptree of a large tree built by preferential attachement.

Rémy's algorithm. Start with the tree $\mathbf{B}_1 = (B_1; A_0, A_1)$ with two vertices labeled A_0 and A_1 .

Rémy's algorithm. Start with the tree $\mathbf{B}_1 = (B_1; A_0, A_1)$ with two vertices labeled A_0 and A_1 . At every step $n \ge 1$:

- pick an edge e of B_n uniformly at random,

Rémy's algorithm. Start with the tree $\mathbf{B}_1 = (B_1; A_0, A_1)$ with two vertices labeled A_0 and A_1 . At every step $n \ge 1$:

- pick an edge e of \mathbf{B}_n uniformly at random,
- add a vertex v on e (thus splitting e into two edges) and attaching a new edge to v linking it to a new leaf labeled A_{n+1} .

Rémy's algorithm. Start with the tree $\mathbf{B}_1 = (B_1; A_0, A_1)$ with two vertices labeled A_0 and A_1 . At every step $n \ge 1$:

- pick an edge e of \mathbf{B}_n uniformly at random,
- add a vertex v on e (thus splitting e into two edges) and attaching a new edge to v linking it to a new leaf labeled A_{n+1} .

Proposition (Rémy '85)

For every fixed $n \ge 1$, the tree B_n is uniformly distributed over the set of all binary trees with n + 1 labeled leaves.

↓ Useful notation: for $1 \le i \le n$, denote by Span(B_n ; $A_0, A_1, \ldots, A_{i-1}$) the subtree of B_n spanned by the leaves $A_0, A_1, \ldots, A_{i-1}$.

↓ Useful notation: for $1 \le i \le n$, denote by Span(B_n ; $A_0, A_1, \ldots, A_{i-1}$) the subtree of B_n spanned by the leaves $A_0, A_1, \ldots, A_{i-1}$.

For n = 5, Span(B_5 ; A_0).

↓ Useful notation: for $1 \le i \le n$, denote by Span(B_n ; $A_0, A_1, \ldots, A_{i-1}$) the subtree of B_n spanned by the leaves $A_0, A_1, \ldots, A_{i-1}$.

For n = 5, Span(B_5 ; A_0 , A_1).

↓ Useful notation: for $1 \le i \le n$, denote by Span(B_n ; $A_0, A_1, \ldots, A_{i-1}$) the subtree of B_n spanned by the leaves $A_0, A_1, \ldots, A_{i-1}$.

For n = 5, Span(B_5 ; A_0 , A_1 , A_2).

↓ Useful notation: for $1 \le i \le n$, denote by Span(B_n ; $A_0, A_1, \ldots, A_{i-1}$) the subtree of B_n spanned by the leaves $A_0, A_1, \ldots, A_{i-1}$.

For n = 5, Span(B_5 ; A_0 , A_1 , A_2 , A_3).

↓ Useful notation: for $1 \le i \le n$, denote by Span(B_n ; $A_0, A_1, \ldots, A_{i-1}$) the subtree of B_n spanned by the leaves $A_0, A_1, \ldots, A_{i-1}$.

For n = 5, Span(B_5 ; A_0 , A_1 , A_2 , A_3 , A_4).

↓ Useful notation: for $1 \le i \le n$, denote by Span(B_n ; $A_0, A_1, \ldots, A_{i-1}$) the subtree of B_n spanned by the leaves $A_0, A_1, \ldots, A_{i-1}$.

 $\stackrel{\textbf{\sc bound}}{\longrightarrow} \textbf{Useful quantity:} \mbox{ for } 1 \leqslant i \leqslant n, \mbox{ the distance of } A_i \mbox{ to } Span(\underline{B}_n; A_0, A_1, \ldots, A_{i-1})$

 $\stackrel{\bullet}{\longrightarrow} \textbf{Useful notation:} \text{ for } 1 \leq i \leq n, \text{ denote by } \text{Span}(B_n; A_0, A_1, \dots, A_{i-1}) \\ \text{the subtree of } B_n \text{ spanned by the leaves } A_0, A_1, \dots, A_{i-1}.$

 $\stackrel{\textbf{V} \leftarrow}{ \mathsf{Span}(\mathsf{B}_n; A_0, A_1, \dots, A_{i-1})} \mathsf{Useful quantity:} \text{ for } 1 \leqslant i \leqslant n, \text{ the distance of } A_i \text{ to } \mathsf{Span}(\mathsf{B}_n; A_0, A_1, \dots, A_{i-1})$

For i = 1, this distance is 4.

 $\stackrel{\bullet}{\longrightarrow} \textbf{Useful notation:} \text{ for } 1 \leq i \leq n, \text{ denote by } \text{Span}(B_n; A_0, A_1, \dots, A_{i-1}) \text{ the subtree of } B_n \text{ spanned by the leaves } A_0, A_1, \dots, A_{i-1}.$

 $\stackrel{\textbf{V} \leftarrow}{ \mathsf{Span}(\mathsf{B}_n; A_0, A_1, \dots, A_{i-1})} \mathsf{Useful quantity:} \text{ for } 1 \leqslant i \leqslant n, \text{ the distance of } A_i \text{ to } \mathsf{Span}(\mathsf{B}_n; A_0, A_1, \dots, A_{i-1})$

For i = 1, this distance is 4. For i = 2, this distance is 2.

 $\stackrel{\bullet}{\longrightarrow} \textbf{Useful notation:} \text{ for } 1 \leq i \leq n, \text{ denote by } \text{Span}(B_n; A_0, A_1, \dots, A_{i-1}) \text{ the subtree of } B_n \text{ spanned by the leaves } A_0, A_1, \dots, A_{i-1}.$

 $\stackrel{\textbf{V} \leftarrow}{ \mathsf{Span}(\mathsf{B}_n; A_0, A_1, \dots, A_{i-1})} \mathsf{Useful quantity:} \text{ for } 1 \leqslant i \leqslant n, \text{ the distance of } A_i \text{ to } \mathsf{Span}(\mathsf{B}_n; A_0, A_1, \dots, A_{i-1})$

For i = 1, this distance is 4. For i = 2, this distance is 2. For i = 3, this distance is 1.

↓ Useful notation: for $1 \le i \le n$, denote by Span(B_n ; $A_0, A_1, \ldots, A_{i-1}$) the subtree of B_n spanned by the leaves $A_0, A_1, \ldots, A_{i-1}$.

 $\stackrel{\textbf{V} \leftarrow}{ \mathsf{Span}(\mathsf{B}_n; A_0, A_1, \dots, A_{i-1})} \mathsf{Useful quantity:} \text{ for } 1 \leqslant i \leqslant n, \text{ the distance of } A_i \text{ to } \mathsf{Span}(\mathsf{B}_n; A_0, A_1, \dots, A_{i-1})$

For i = 1, this distance is 4. For i = 2, this distance is 2. For i = 3, this distance is 1.

For i = 4, this distance is 1.

 $\stackrel{\bullet}{\longrightarrow} \textbf{Useful notation:} \text{ for } 1 \leq i \leq n, \text{ denote by } \text{Span}(B_n; A_0, A_1, \dots, A_{i-1}) \text{ the subtree of } B_n \text{ spanned by the leaves } A_0, A_1, \dots, A_{i-1}.$

 $\stackrel{\textbf{V} \leftarrow}{ \mathsf{Span}(\mathsf{B}_n; A_0, A_1, \dots, A_{i-1})} \mathsf{Useful quantity:} \text{ for } 1 \leqslant i \leqslant n, \text{ the distance of } A_i \text{ to } \mathsf{Span}(\mathsf{B}_n; A_0, A_1, \dots, A_{i-1})$

- For i = 1, this distance is 4.
- For i = 2, this distance is 2.
- For i = 3, this distance is 1.
- For i = 4, this distance is 1.
- For i = 5, this distance is 1.

Proposition (Peköz, Ross, Röllin '14)

There is a coupling between Rémy's algorithm and preferential attachment such that the degree of i at time n in $T_n^{-\circ}$ is the distance of A_i to Span $(B_n; A_0, A_1, \ldots, A_{i-1})$ for every $1 \leq i \leq n$.

Proposition (Peköz, Ross, Röllin '14)

There is a coupling between Rémy's algorithm and preferential attachment such that the degree of i at time n in $T_n^{-\circ}$ is the distance of A_i to $\text{Span}(B_n; A_0, A_1, \dots, A_{i-1})$ for every $1 \leq i \leq n$.

 \bigwedge **Idea**: if, at time n, a new edge is joined to vertex i in $T_n^{-\circ}$, then split an edge of the path going from A_i to $\text{Span}(B_n; A_0, A_1, \dots, A_{i-1})$.

 $26 / -\pi$

To simplify, we consider the case $S = -\infty$ of a *planted* tree with one vertex (i.e. a unique vertex with a half-edge attached to it).

Proposition (Peköz, Ross, Röllin '14)

There is a coupling between Rémy's algorithm and preferential attachment such that the degree of i at time n in $T_n^{-\circ}$ is the distance of A_i to $\text{Span}(B_n; A_0, A_1, \dots, A_{i-1})$ for every $1 \leq i \leq n$.

\→ Idea: if, at time n, a new edge is joined to vertex i in $T_n^{-\circ}$, then split an edge of the path going from A_i to Span(B_n ; $A_0, A_1, \ldots, A_{i-1}$).

Proposition (Peköz, Ross, Röllin '14)

There is a coupling between Rémy's algorithm and preferential attachment such that the degree of i at time n in $T_n^{-\circ}$ is the distance of A_i to $\text{Span}(B_n; A_0, A_1, \dots, A_{i-1})$ for every $1 \leq i \leq n$.

\→ Idea: if, at time n, a new edge is joined to vertex i in $T_n^{-\circ}$, then split an edge of the path going from A_i to Span(B_n ; $A_0, A_1, \ldots, A_{i-1}$).

Proposition (Peköz, Ross, Röllin '14)

There is a coupling between Rémy's algorithm and preferential attachment such that the degree of i at time n in $T_n^{-\circ}$ is the distance of A_i to $\text{Span}(B_n; A_0, A_1, \dots, A_{i-1})$ for every $1 \leq i \leq n$.

\→ Idea: if, at time n, a new edge is joined to vertex i in $T_n^{-\circ}$, then split an edge of the path going from A_i to Span $(B_n; A_0, A_1, ..., A_{i-1})$.

Proposition (Peköz, Ross, Röllin '14)

There is a coupling between Rémy's algorithm and preferential attachment such that the degree of i at time n in $T_n^{-\circ}$ is the distance of A_i to $\text{Span}(B_n; A_0, A_1, \dots, A_{i-1})$ for every $1 \leq i \leq n$.

\→ Idea: if, at time n, a new edge is joined to vertex i in $T_n^{-\circ}$, then split an edge of the path going from A_i to Span(B_n ; $A_0, A_1, \ldots, A_{i-1}$).

Proposition (Peköz, Ross, Röllin '14)

There is a coupling between Rémy's algorithm and preferential attachment such that the degree of i at time n in $T_n^{-\circ}$ is the distance of A_i to $\text{Span}(B_n; A_0, A_1, \dots, A_{i-1})$ for every $1 \leq i \leq n$.

∧→ **Idea**: if, at time n, a new edge is joined to vertex i in $T_n^{-\circ}$, then split an edge of the path going from A_i to $\text{Span}(B_n; A_0, A_1, \dots, A_{i-1})$.

Recall that $\mathbf{B}_n = (\mathbf{B}_n; \mathbf{A}_0, \mathbf{A}_1, \dots, \mathbf{A}_n).$

Recall that $\mathbf{B}_n = (B_n; A_0, A_1, \dots, A_n)$. Let $\operatorname{Glu}(\mathbf{B}_n)$ be the graph obtained from B_n by identifying: - A_1 with A_0

- A_1 with A_0
- for every $2 \leq i \leq n$, A_i with P_i , the vertex of Span $(B_n; A_0, A_1, \dots, A_{i-1})$ which is the closest to A_i .

- A_1 with A_0
- for every $2 \leq i \leq n$, A_i with P_i , the vertex of Span $(B_n; A_0, A_1, \dots, A_{i-1})$ which is the closest to A_i .

Proposition (Curien, Duquesne, K., Manolescu).

We have:

$$(\text{Loop}(\mathsf{T}_{\mathsf{n}}^{-\circ}); \mathfrak{n} \ge 1) \stackrel{(d)}{=} (\text{Glu}(\mathsf{B}_{\mathsf{n}}); \mathfrak{n} \ge 1).$$

- A_1 with A_0
- for every $2 \leq i \leq n$, A_i with P_i , the vertex of Span $(B_n; A_0, A_1, \dots, A_{i-1})$ which is the closest to A_i .

- A_1 with A_0
- for every $2 \leq i \leq n$, A_i with P_i , the vertex of Span $(B_n; A_0, A_1, \dots, A_{i-1})$ which is the closest to A_i .

Proposition (Curien, Duquesne, K., Manolescu).

We have:

$$(\text{Loop}(\mathsf{T}_{n}^{-\circ}); n \ge 1) \stackrel{(d)}{=} (\text{Glu}(\mathsf{B}_{n}); n \ge 1).$$

Recall that $B_n = (B_n; A_0, A_1, ..., A_n)$. Let $Glu(B_n)$ be the graph obtained from B_n by identifying:

- A_1 with A_0
- for every $2 \leq i \leq n$, A_i with P_i , the vertex of Span $(B_n; A_0, A_1, \dots, A_{i-1})$ which is the closest to A_i .

Proposition (Curien, Duquesne, K., Manolescu).

We have:

$$(\text{Loop}(\mathsf{T}_{\mathsf{n}}^{-\circ}); \mathfrak{n} \ge 1) \stackrel{(d)}{=} (\text{Glu}(\mathsf{B}_{\mathsf{n}}); \mathfrak{n} \ge 1).$$

 $\checkmark \rightarrow$ Key fact: Rémy's algorithm converges to the Brownian Continuum Random Tree.

What is the Brownian Continuum Random Tree?

First define the contour function of a tree:

What is the Brownian Continuum Random Tree?

Knowing the contour function, it is easy to recover the tree by gluing:

(animation here)

What is the Brownian Continuum Random Tree?

The Brownian tree $\ensuremath{\mathbb{T}}$ is obtained by gluing from the Brownian excursion e.

Figure : A simulation of e.

A simulation of the Brownian CRT

Figure : A non isometric plane embedding of a realization of $\mathbb{T}_e.$

There exists a pair $(\mathcal{T}_e, (X_i; i \ge 0))$, where \mathcal{T}_e is a Brownian CRT and $(X_i; i \ge 0)$ is a collection of i.i.d. vertices sampled according to its mass measure

There exists a pair $(\mathcal{T}_e, (X_i; i \ge 0))$, where \mathcal{T}_e is a Brownian CRT and $(X_i; i \ge 0)$ is a collection of i.i.d. vertices sampled according to its mass measure, such that

$$(n^{-1/2} \cdot \underline{B}_n; A_0, \dots, A_k) \quad \xrightarrow[n \to \infty]{a.s.} \quad (2\sqrt{2} \cdot \underline{T}_e; X_0, \dots, X_k).$$

for every $k \ge 1$

There exists a pair $(\mathcal{T}_e, (X_i; i \ge 0))$, where \mathcal{T}_e is a Brownian CRT and $(X_i; i \ge 0)$ is a collection of i.i.d. vertices sampled according to its mass measure, such that

$$(\mathfrak{n}^{-1/2} \cdot \underline{\mathsf{B}}_{\mathfrak{n}}; A_0, \dots, A_k) \quad \xrightarrow[\mathfrak{n} \to \infty]{a.s.} \quad (2\sqrt{2} \cdot \underline{\mathbb{T}}_{e}; X_0, \dots, X_k).$$

for every $k \ge 1$ (for the k + 1-pointed GH topology).

There exists a pair $(\mathcal{T}_e, (X_i; i \ge 0))$, where \mathcal{T}_e is a Brownian CRT and $(X_i; i \ge 0)$ is a collection of i.i.d. vertices sampled according to its mass measure, such that

$$\begin{pmatrix} n^{-1/2} \cdot \underline{B}_n; A_0, \dots, A_k \end{pmatrix} \quad \xrightarrow[n \to \infty]{a.s.} \quad \left(2\sqrt{2} \cdot \underline{\mathbb{T}}_e; X_0, \dots, X_k \right).$$

for every $k \ge 1$ (for the k + 1-pointed GH topology).

Now define \mathcal{L} by making the following identifications in \mathcal{T}_{e} :

There exists a pair $(\mathcal{T}_e, (X_i; i \ge 0))$, where \mathcal{T}_e is a Brownian CRT and $(X_i; i \ge 0)$ is a collection of i.i.d. vertices sampled according to its mass measure, such that

$$\begin{pmatrix} n^{-1/2} \cdot \underline{B}_n; A_0, \dots, A_k \end{pmatrix} \quad \xrightarrow[n \to \infty]{a.s.} \quad \left(2\sqrt{2} \cdot \underline{T}_e; X_0, \dots, X_k \right).$$

for every $k \ge 1$ (for the k + 1-pointed GH topology).

Now define \mathcal{L} by making the following identifications in \mathcal{T}_e :

- X_1 with X_0

There exists a pair $(\mathcal{T}_e, (X_i; i \ge 0))$, where \mathcal{T}_e is a Brownian CRT and $(X_i; i \ge 0)$ is a collection of i.i.d. vertices sampled according to its mass measure, such that

$$(n^{-1/2} \cdot \underline{B}_n; A_0, \dots, A_k) \quad \xrightarrow[n \to \infty]{a.s.} \quad (2\sqrt{2} \cdot \underline{T}_e; X_0, \dots, X_k).$$

for every $k \ge 1$ (for the k + 1-pointed GH topology).

Now define \mathcal{L} by making the following identifications in \mathcal{T}_e :

- X_1 with X_0
- for every $i\geqslant 2,$ X_i with $\mathsf{P}_i,$ the vertex of $\mathsf{Span}(\mathbb{T}_e;X_0,X_1,\ldots,X_{i-1})$ which is the closest to $X_i.$

There exists a pair $(\mathcal{T}_e, (X_i; i \ge 0))$, where \mathcal{T}_e is a Brownian CRT and $(X_i; i \ge 0)$ is a collection of i.i.d. vertices sampled according to its mass measure, such that

$$(n^{-1/2} \cdot \underline{B}_n; A_0, \dots, A_k) \quad \xrightarrow[n \to \infty]{a.s.} \quad (2\sqrt{2} \cdot \underline{T}_e; X_0, \dots, X_k).$$

for every $k \ge 1$ (for the k + 1-pointed GH topology).

Now define \mathcal{L} by making the following identifications in \mathcal{T}_e :

- X_1 with X_0
- for every $i\geqslant 2,~X_i$ with $\mathsf{P}_i,$ the vertex of $\mathsf{Span}(\mathbb{T}_e;X_0,X_1,\ldots,X_{i-1})$ which is the closest to $X_i.$

Then

$$\mathfrak{n}^{-1/2} \cdot \operatorname{Glu}(\mathbf{B}_n) \xrightarrow[n \to \infty]{a.s.} \mathcal{L}.$$

There exists a pair $(\mathcal{T}_e, (X_i; i \ge 0))$, where \mathcal{T}_e is a Brownian CRT and $(X_i; i \ge 0)$ is a collection of i.i.d. vertices sampled according to its mass measure, such that

$$(n^{-1/2} \cdot \underline{B}_n; A_0, \dots, A_k) \quad \xrightarrow[n \to \infty]{a.s.} \quad (2\sqrt{2} \cdot \underline{T}_e; X_0, \dots, X_k).$$

for every $k \ge 1$ (for the k + 1-pointed GH topology).

Now define \mathcal{L} by making the following identifications in \mathcal{T}_e :

- X_1 with X_0
- for every $i\geqslant 2,~X_i$ with $\mathsf{P}_i,$ the vertex of $\mathsf{Span}(\mathbb{T}_e;X_0,X_1,\ldots,X_{i-1})$ which is the closest to $X_i.$

Then

$$\mathfrak{n}^{-1/2} \cdot \operatorname{Glu}(\mathbf{B}_n) \xrightarrow[n \to \infty]{a.s.} \mathcal{L}.$$

and hence

$$n^{-1/2} \cdot \operatorname{Loop}(\mathsf{T}_n^{-\circ}) \xrightarrow[n \to \infty]{a.s.} \mathcal{L},$$

I. PREFERENTIAL ATTACHMENT AND INFLUENCE OF THE SEED

II. LOOPTREES AND PREFERENTIAL ATTACHMENT

III. EXTENSIONS AND CONJECTURES

Let μ be a critical $(\sum_{i \ge 0} i\mu_i = 1)$ probability measure on $\{0, 1, 2, \ldots\}$ and let \mathcal{T}_n be a μ -Galton–Watson tree conditioned to have n vertices.

Let μ be a critical $(\sum_{i \ge 0} i\mu_i = 1)$ probability measure on $\{0, 1, 2, \ldots\}$ and let \mathfrak{T}_n be a μ -Galton–Watson tree conditioned to have n vertices. Does $\operatorname{Loop}(\mathfrak{T}_n)$ have scaling limits?

Let μ be a critical $(\sum_{i \ge 0} i\mu_i = 1)$ probability measure on $\{0, 1, 2, ...\}$ and let \mathfrak{T}_n be a μ -Galton–Watson tree conditioned to have n vertices. Does $\operatorname{Loop}(\mathfrak{T}_n)$ have scaling limits?

Let μ be a critical $(\sum_{i \ge 0} i\mu_i = 1)$ probability measure on $\{0, 1, 2, ...\}$ and let \mathfrak{T}_n be a μ -Galton–Watson tree conditioned to have n vertices. Does $\operatorname{Loop}(\mathfrak{T}_n)$ have scaling limits?

Let μ be a critical $(\sum_{i \ge 0} i\mu_i = 1)$ probability measure on $\{0, 1, 2, ...\}$ and let \mathfrak{T}_n be a μ -Galton–Watson tree conditioned to have n vertices. Does $\operatorname{Loop}(\mathfrak{T}_n)$ have scaling limits?

Theorem (Curien, Haas & K. '13).
If
$$\mu$$
 has finite variance σ^2 (and an exponential moment), then
 $n^{-1/2} \cdot \text{Loop}(\mathfrak{T}_n) \xrightarrow[n \to \infty]{} \frac{(d)}{n \to \infty} \quad \frac{2}{\sigma} \cdot \frac{1}{4} \left(\sigma^2 + 4 - (\mu_0 + \mu_2 + \mu_4 + \cdots) \right) \cdot \mathfrak{T}_e.$

Figure : A non isometric plane embedding of a realization of a looptree of a large critical Galton–Watson tree with finite variance.

Theorem (Curien & K. '13). Fix $\alpha \in (1, 2)$ and assume that $\mu_i \sim C/i^{1+\alpha}$ as $i \to \infty$. There exists a random compact metric space \mathcal{L}_{α} such that

$$\mathfrak{n}^{-1/\alpha} \cdot \operatorname{Loop}(\mathfrak{T}_{\mathfrak{n}}) \xrightarrow[\mathfrak{n} \to \infty]{(d)} \mathcal{L}_{\alpha},$$

Theorem (Curien & K. '13).

Fix $\alpha \in (1,2)$ and assume that $\mu_i \sim C/i^{1+\alpha}$ as $i \to \infty$. There exists a random compact metric space \mathcal{L}_{α} such that

$$n^{-1/\alpha} \cdot \operatorname{Loop}(\mathfrak{T}_n) \xrightarrow[n \to \infty]{(d)} \mathcal{L}_{\alpha},$$

and is called the stable looptree of index α .

Theorem (Curien & K. '13).

Fix $\alpha \in (1,2)$ and assume that $\mu_i \sim C/i^{1+\alpha}$ as $i \to \infty$. There exists a random compact metric space \mathcal{L}_{α} such that

$$\mathfrak{n}^{-1/\alpha} \cdot \operatorname{Loop}(\mathfrak{T}_{\mathfrak{n}}) \xrightarrow[n \to \infty]{(d)} \mathcal{L}_{\alpha},$$

and is called the stable looptree of index α . In addition, $\mathcal{L}_{3/2}$ is the scaling limit of the boundary of (critical) site percolation on Angel & Schramm's Uniform Infinite Planar Triangulation.

Figure : A non isometric plane embedding of a realization of $\mathcal{L}_{3/2}$, the stable looptree of index 3/2.

Conjectures: back to preferential attachment

Question.

What happens for linear preferential attachment, i.e. when instead of being chosen proportionally to deg(u) a vertex u is chosen proportionally to deg(u) + a with a > -1?

Conjectures: back to preferential attachment

Question.

What happens for linear preferential attachment, i.e. when instead of being chosen proportionally to deg(u) a vertex u is chosen proportionally to deg(u) + a with a > -1?

For every plane trees S_1, S_2 , we have $\lim_{n \to \infty} d_{TV}(T_n^{(S_1)}, T_n^{(S_2)}) = d_{TV}(\mathcal{L}^{(S_1)}, \mathcal{L}^{(S_2)}).$